The χ-ary Extended Compact Classifier System: Linkage Learning in Pittsburgh LCS

نویسندگان

  • Xavier Llorà
  • Kumara Sastry
  • David E. Goldberg
  • Luis de la Ossa
چکیده

This paper proposes a competent Pittsburgh LCS that automatically mines important substructures of the underlying problems and takes problems that were intractable with first-generation Pittsburgh LCS and renders them tractable. Specifically, we propose a χ-ary extended compact classifier system (χeCCS) which uses (1) a competent genetic algorithm (GA) in the form of χ-ary extended compact genetic algorithm, and (2) a niching method in the form restricted tournament replacement, to evolve a set of maximally accurate and maximally general rules. The results clearly show that linkage exists in the multiplexer problem which needs to be accurately discovered and efficiently processed in order to solve the problem in tractable time. The results also show that in accordance with the facetwise models from GA theory, the number of function evaluations required by χeCCs to successfully evolve an optimal rule set scales exponentially with the number of address bits (building block size) and quadratically with the problem size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Classifier System

This paper reviews a competent Pittsburgh LCS that automatically mines important substructures of the underlying problems and takes problems that were intractable with firstgeneration Pittsburgh LCS and renders them tractable. Specifically, we propose a χ-ary extended compact classifier system (χeCCS) which uses (1) a competent genetic algorithm (GA) in the form of χ-ary extended compact geneti...

متن کامل

Bloat Control and Generalization Pressure Using the Minimum Description Length Principle for a Pittsburgh Approach Learning Classifier System

Bloat control and generalization pressure are very important issues in the design of Pittsburgh Approach Learning Classifier Systems (LCS), in order to achieve simple and accurate solutions in a reasonable time. In this paper we propose a method to achieve these objectives based on the Minimum Description Length (MDL) principle. This principle is a metric which combines in a smart way the accur...

متن کامل

Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks

Recently, Learning Classifier Systems (LCS) and particularly XCS have arisen as promising methods for classification tasks and data mining. This paper investigates two models of accuracy-based learning classifier systems on different types of classification problems. Departing from XCS, we analyze the evolution of a complete action map as a knowledge representation. We propose an alternative, U...

متن کامل

Learning classifier systems from first principles : a probabilistic reformulation of learning classifier systems from the perspective of machine learning

Learning Classifier Systems (LCS) are a family of rule-based machine learning methods. They aim at the autonomous production of potentially humanreadable results that are the most compact generalised representation whilst also maintaining high predictive accuracy, with a wide range of application areas, such as autonomous robotics, economics, and multi-agent systems. Their design is mainly appr...

متن کامل

Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules

In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006